
Aurei White Paper



Contents
Aurei（ARI）:
The next generation smart contract and decentralized

• Aurei Account

• Messages and Transactions

• Aurei state transition function

• Code Execution

• Bitcoin as a state transition system

• Mining

• Merkle Tree

• Alternative blockchain applications

• script

• Token System

• Financial derivatives and stable currencies

• Identity and Reputation Systems

• Decentralized Storage

• Decentralized Autonomous Organization

• Further applications

application platform
Table of contents

history

Aurei

application



• Implementation of the Improved Ghost Protocol

• cost

• Computation and Turing completeness

• Currency and issuance

• Release Breakdown

• Centralization of Mining

• Scalability

Miscellaneous and Concerns

• annotation

• Further Reading

Overview: Decentralized Applications

in conclusion

Notes and Further Reading



When Satoshi Nakamoto launched the Bitcoin blockchain in January 2009, 

he simultaneously introduced two revolutionary new and untested concepts 

to the world. The first was bitcoin, a decentralized peer-to-peer online 

currency that maintains value without any asset backing, intrinsic value, or 

central issuer. So far, bitcoin has attracted a great deal of public attention, 

both politically as a currency without a central bank and with wild price 

swings. However, there was another part of Satoshi’s grand experiment that 

was just as important as bitcoin: the proof-of-work blockchain concept that 

allowed people to reach consensus on the order of transactions. Bitcoin as 

an application can be described as a first-to-file system: if someone has 50 

BTC and sends it to both A and B at the same time, only the transaction that 

is confirmed first will take effect. There was no inherent way to determine 

which of the two transactions came first, and this problem hampered the 

development of decentralized digital currencies for many years. Satoshi’s 

blockchain was the first reliable decentralized solution. Now, developers’ 

attention is rapidly turning to the second part of bitcoin technology: how 

blockchain can be used for areas other than currency.

Commonly mentioned applications include using on-chain digital assets to 

represent custom currencies and financial instruments (colored coins), 

ownership of some underlying physical device (smart assets), non-fungible 

assets like domain names (namecoins), and more advanced applications 

such as decentralized exchanges, financial derivatives, peer-to-peer 

gambling, and on-chain identity and reputation systems. Another important
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area that is often asked about is "smart contracts" - systems that 

automatically transfer digital assets according to arbitrary rules set in 

advance. For example, one might have a storage contract of the form "A can 

withdraw up to X coins per day, B can withdraw up to Y coins per day, A and 

B can withdraw at will, A can stop B's withdrawal rights". The logical 

extension of this type of contract is decentralized autonomous 

organizations (DAOs) - long-term smart contracts that contain an 

organization's assets and encode the organization's rules. Aurei's goal is to 

provide a blockchain with a built-in mature Turing-complete language that 

can be used to create contracts to encode arbitrary state transition 

functions, allowing users to create all of the above mentioned systems and 

many others that we have not yet imagined by simply implementing the 

logic in a few lines of code.



History of Aorecoin

history

Italy is an ancient European civilization with a long history, outstanding art 

and unique customs. It is also a developed capitalist country, one of the four 

largest economies in Europe and the eighth largest economy in the world. 

Due to its developed small and medium-sized enterprises , it is also known 

as the "Kingdom of Small and Medium-sized Enterprises". It has a total of 55 

UNESCO World Heritage Sites , such as the Arena, Pantheon, Arc de 

Triomphe and many other ancient buildings. It is ranked with China as the 

country with the most World Heritage Sites in the world. And these 

heritages can be traced back to historical periods.

Rome is the capital of Italy, and it can also be said to be the predecessor of 

Italy. Why do we say that? This is because ancient Rome refers to the 

civilization that emerged in the central part of the Italian Peninsula (i.e. the 

Apennine Peninsula ) in the early 9th century BC. Ancient Rome went 

through three stages: the Roman Kingdom (753-509 BC), the Roman 

Republic (509-27 BC), and the Roman Empire (27-476 BC/1453). During the 

Roman Republic and the Roman Empire, the capital was located in Rome, 

which lasted from 509 BC to 1453 AD. During this period, it was divided into 

the Eastern Roman Empire and the Western Roman Empire in 395 AD. The 

Western Roman Empire continued to set its capital in Rome, while the 

Eastern Roman Empire had little to do with Italy. The Western Roman Empire 

fell in 476 AD, and the Middle Ages in Europe began. It lasted until the fall of 

the Eastern Roman Empire in 1453, and the Middle Ages ended. Therefore,



there was no country called Rome on Italian soil during the Middle Ages. 

This period was a long period of division and separatism in Italy, and it was 

finally unified by the Kingdom of Saturn in the 19th century. From the 

founding of the Roman Republic to the unification of Italy, the Italian nation 

has played an extremely important and indispensable position, so it can be 

said that Rome is the predecessor of Italy.

As a tool for measuring prices and a medium for purchasing goods, currency 

has also been given different storage values in different periods. . The 

currency of ancient Rome can be traced back to the end of the 7th century 

BC, when some Greek cities in Asia Minor pressed gold and silver alloys. The 

main ones are cadras, sestels, semis, aures, duponti, dinars, and ass. . Gold 

coins have been issued since the Second Punic War of ancient Rome. As a 

gold coin: aure, (Aureus), the most valuable currency in Roman currency, 

was cast in gold. In the era of Caesar, an aure weighed about 8 grams. In 24 

BC, Octavian established the Roman coinage system, which was based on 4 

metals: gold, silver, brass and bronze. Designed for different categories of 

use. Gold and silver were used officially. It was also during the Octavian 

period that the aure was set at 1/40 Roman pound. It has been quite scarce 

since the mid-2nd century AD, but it was still the standard gold coin in the 

early and middle stages of the empire. Therefore, the value is also high. Italy 

launched the Aurel Coin, which is derived from blockchain technology and 

will be issued globally. The issuance of Aurel Coin has also been recognized 

and agreed upon by many countries. The reason why it has attracted so 

much attention and influence is that it is a digital cryptocurrency issued 

using blockchain 3.0 technology. The 3.0 technology is based on blockchain 

technology 1.0 and 2.0, and has made new innovations and improvements 

and fully realized decentralized issuance.



The concept of decentralized digital currency, like alternative applications 

such as property registries, has been proposed for decades. Most of the 

anonymous electronic cash protocols of the 1980s and 1990s were based on 

Chaumian blinding. These electronic cash protocols provided highly private 

currencies, but none of them became popular because they all relied on a 

centralized intermediary. In 1998, Wei Dai's b-money first introduced the 

idea of creating money by solving computational problems and 

decentralized consensus, but the proposal did not provide a specific method 

for how to achieve decentralized consensus. In 2005, Hal Finney introduced 

the concept of "reusable proofs of work", which used both the ideas of 

b-money and the computationally difficult Hashcash problem proposed by 

Adam Back to create cryptocurrencies. However, this concept once again 

lost itself in idealism because it relied on trusted computing as a backend.

Because money is a first-come-first-served application, the order of 

transactions is crucial, so decentralized money needs to find a way to 

achieve decentralized consensus. The main obstacle encountered by all 

electronic money protocols before Bitcoin is that although research on how 

to create secure Byzantine-fault-tolerant multi-party consensus systems 

has lasted for many years, the above protocols only solve half of the 

problem. These protocols assume that all participants in the system are 

known and produce security boundaries in the form of "if there are N parties 

participating in the system, then the system can tolerate N/4 malicious 

participants." However, the problem with this assumption is that in the case 

of anonymity, the security boundaries set by the system are vulnerable to 

Sybil attacks, because an attacker can create thousands of nodes on a 

server or botnet to unilaterally ensure that they have a majority share.



Satoshi Nakamoto's innovation was to introduce the idea of combining a 

very simple node-based decentralized consensus protocol with a 

proof-of-work mechanism. Nodes gain the right to participate in the system 

through the proof-of-work mechanism, packaging transactions into "blocks" 

every ten minutes, thereby creating an ever-growing blockchain. Nodes 

with a lot of computing power have greater influence, but it is much more 

difficult to gain more computing power than the entire network than to 

create a million nodes. Although the Bitcoin blockchain model is very simple, 

it has proven to be useful enough in practice. In the next five years, it will 

become the cornerstone of more than two hundred currencies and 

protocols around the world.

Bitcoin as a state transition system

Technically speaking, the Bitcoin ledger can be thought of as a state 

transition system that includes all existing Bitcoin ownership states and a 

"state transition function". The state transition function takes the current 

state and a transaction as input and outputs a new state. For example, in a 

standard banking system, the state is a balance sheet. A request to transfer 

X dollars from account A to account B is a transaction. The state transition 

function will subtract X dollars from account A and add X dollars to account 

B. If the balance of account A is less than X dollars, the state transition 

function will return an error message. So we can define the state transition 

function as follows:

APPLY(S,TX) �> S' or ERROR



In the banking system mentioned above, the state transition function is as 

follows:

APPLY({ Alice: $50, Bob: $50 },"send $20 from Alice to Bob") = { Alice: 

$30,Bob: $70 }

but:

APPLY({ Alice: $50, Bob: $50 },"send $70 from Alice to Bob") = ERROR

The “state” of the Bitcoin system is the set of all mined, unspent bitcoins 

(technically called “unspent transaction outputs” or UTXOs). Each UTXO 

has a value and an owner (defined by a 20-byte address which is essentially 

a cryptographic public key[1]). A transaction consists of one or more inputs 

and one or more outputs. Each input contains a reference to an existing 

UTXO and a cryptographic signature created by the private key 

corresponding to the owner’s address. Each output contains a new UTXO 

that is added to the state.

In the Bitcoin system, the state transition function APPLY(S,TX)->S' can be 

roughly defined as follows:

1.Each input of the transaction:

• oIf the referenced UTXO does not exist in the current state ( S ), an error 

message is returned

• oIf the signature does not match the UTXO owner's signature, an error 

message is returned



2.If the total value of all UTXO inputs is less than the total value of all UTXO 

outputs, an error message is returned.

3.Return to the new state S' , in which all input UTXOs are removed and all 

output UTXOs are added.

The first part of the first step prevents the sender of the transaction from 

spending non-existent bitcoins, and the second part prevents the sender of 

the transaction from spending other people's bitcoins. The second step 

ensures value conservation. Bitcoin's payment protocol is as follows. 

Suppose Alice wants to send 11.7BTC to Bob. In fact, Alice cannot have 

exactly 11.7BTC. Suppose, the minimum amount of bitcoins she can get is: 

6+4+2=12. Therefore, she can create a transaction with 3 inputs and 2 

outputs. The face value of the first output is 11.7BTC, and the owner is Bob 

(Bob's Bitcoin address), and the face value of the second output is 0.3BTC, 

and the owner is Alice herself, that is, change.

ARI output mechanism

If we had a trusted centralized service, the state transition system could be 

easily implemented, and the above functions could simply be encoded 

accurately. However, we want to build the Bitcoin system into a 

decentralized currency system, and in order to ensure that everyone agrees 

on the order of transactions, we need to combine the state transition system 

with a consensus system. Bitcoin's decentralized consensus process requires 

nodes in the network to continuously try to package transactions into 

"blocks". The network is designed to produce a block approximately every 

ten minutes, and each block contains a timestamp, a random number, a



reference to the previous block (i.e., a hash), and a list of all transactions that 

have occurred since the previous block was generated. In this way, a 

continuously growing blockchain is created over time, which is constantly 

updated to represent the latest state of the Bitcoin ledger.

According to this paradigm, the algorithm for checking whether a block is 

valid is as follows:

1.Checks whether the previous block referenced by the block exists and is 

valid.

2.Check if the block’s timestamp is later than the previous block’s timestamp 

and earlier than 2 hours in the future [2].

3.Checks whether the block's proof of work is valid.

4.Assign the final state of the previous block to S[0] .

5.Assume that TX is the transaction list of the block, which contains n 

transactions. For all i belonging to 0...n-1, perform state transition S[i+1] = 

APPLY(S[i],TX[i]) . If any transaction i fails in the state transition, exit the 

program and return an error.

6.Returns correct, state S[n] is the final state of this block.

Essentially, every transaction in a block must provide a correct state 

transition. Note that the "state" is not encoded in the block. It is purely an 

abstract concept remembered by the validation nodes. For any block, you 

can start from the genesis state and add every transaction in every block in 

order to calculate the current state. In addition, you need to pay attention to 

the order in which miners include transactions in the block. If there are two 

transactions A and B in a block, and B spends the UTXO created by A, if A is 

before B, the block is valid, otherwise, the block is invalid.



The interesting part of the block validation algorithm is the concept of 

“proof of work”: Each block is hashed with SHA256 and the resulting hash is 

treated as a 256-bit value that must be less than a dynamically adjusted 

target value, which at the time of this writing is approximately 2^190. The 

purpose of proof of work is to make block creation difficult, thereby 

preventing Sybil attackers from maliciously regenerating the blockchain. 

Because SHA256 is a completely unpredictable pseudo-random function, 

the only way to create a valid block is to simply try and error, increasing the 

value of the random number and seeing if the new hash value is less than 

the target value. If the current target value is 2^192, this means that on 

average it takes 2^64 attempts to generate a valid block. Generally 

speaking, the Bitcoin network resets the target value every 2016 blocks, 

which guarantees that a block is generated every ten minutes on average. To 

reward miners for their computational work, each miner who successfully 

generates a block is entitled to include in the block a transaction that sends 

them 25 BTC out of thin air. In addition, if the input of the transaction is 

greater than the output, the difference is paid to the miner as a “transaction 

fee”. By the way, rewards to miners are the only mechanism for issuing 

Bitcoins, and there are no Bitcoins in the genesis state.

To better understand the purpose of mining, let's analyze what happens 

when a malicious attacker appears on the Bitcoin network. Because Bitcoin's 

cryptographic foundation is very secure, the attacker will choose to attack 

the part that is not directly protected by cryptography: the transaction 

sequence. The attacker's strategy is very simple:



1.Send 100 BTC to the seller to purchase the product (especially electronic 

products that do not require mailing).

2.Wait until the item is shipped.

3.Create another transaction to send the same 100 BTC to your own 

account.

4.Make the Bitcoin network believe that the transaction sent to your 

account was sent first.

5.Aurei (ARI) has completed the above-mentioned production process, and 

100 million pieces have undergone currency code audit and total quantity 

audit, and can be paid and transferred normally.

Merkle Tree

Figure 1: Providing only a few nodes on the Merkle tree is enough to provide 

legal proof of a branch.

Figure 2: Any attempt to change any part of the Merkle tree will eventually 

lead to an inconsistency somewhere on the chain.

An important scalability feature of the Bitcoin system is that its transactions 

are stored in a multi-level data structure. The hash of a block is actually just 

the hash of the block header, which is a piece of data about 200 bytes long 

that contains a timestamp, a random number, the hash of the previous 

block, and the root hash of the Merkle tree that stores all the block 

transactions.



A Merkle tree is a binary tree consisting of a set of leaf nodes, a set of 

intermediate nodes, and a root node. The bottom, a large number of leaf 

nodes, contain the basic data, each intermediate node is the hash of its two 

children, and the root node is also the hash of its two children, representing 

the top of the Merkle tree. The purpose of a Merkle tree is to allow block 

data to be transmitted piecemeal: a node can download a block header from 

one source, and the rest of the tree from another source, and still be able to 

confirm that all the data is correct. This is possible because the hash 

propagates upward: if a malicious user tries to add a fake transaction lower 

in the tree, the resulting change will cause changes to nodes higher up in 

the tree, and to nodes higher up, and eventually to the root node and the 

block hash, so that the protocol will record it as a completely different block 

(almost certainly with an incorrect proof of work).

The Merkle tree protocol is critical to the long-term sustainability of Bitcoin. 

In April 2014, a full node in the Bitcoin network - a node that stores and 

processes all the data for all blocks - took up 15GB of storage space, and it 

is growing at a rate of more than 1GB per month. Currently, this storage 

space is acceptable for desktop computers, but mobile phones are no 

longer able to handle such a large amount of data. In the future, only 

commercial organizations and hobbyists will act as full nodes. The simplified 

payment confirmation (SPV) protocol allows for another type of node to 

exist, such a node is called a "light node", which downloads the block header, 

confirms the workload proof with the block header, and then downloads 

only the Merkle tree "branches" related to its transactions. This allows light 

nodes to safely determine the status of any Bitcoin transaction and the 

current balance of an account by downloading only a small part of the entire 

blockchain.



Other blockchain applications

The idea of applying the idea of blockchain to other areas has long been 

around. In 2005, Nick Szabo proposed the concept of "title property with 

ownership", describing how the development of replicated database 

technology can enable blockchain-based systems to be applied to register 

land ownership, creating a detailed framework that includes concepts such 

as property rights, illegal encroachment, and Georgia land taxes. 

Unfortunately, however, there were no practical replicated database systems 

at the time, so the protocol was not put into practice. However, since the 

successful development of the decentralized consensus of the Bitcoin 

system in 2009, many other applications of blockchain have begun to 

emerge rapidly.

Namecoin - Created in 2010, it is billed as a decentralized name registry. 

Decentralized protocols like Tor, Bitcoin, and BitMessage require some way 

to identify accounts so that others can interact with them. However, the only 

available identifiers in all existing solutions are pseudo-random hashes like 

1LW79wp5ZBqaHW1jL5TciBCrhQYtHagUWy . Ideally, one would like to 

have an account with a name like "george". However, the problem is that if 

someone can create an account called "george", then anyone else can also 

create an account called "george" to pretend to be someone else. The only 

solution is a first-to-file system, where only the first registrant can 

successfully register, and a second person cannot register the same account 

again. This problem can be solved by using Bitcoin's consensus protocol. 

Namecoin is the earliest and most successful name registry system to use 

blockchain.



Colored coins - The purpose of colored coins is to provide a service for 

people to create their own digital currency on the Bitcoin blockchain, or, 

more importantly, currency in general - digital tokens. According to the 

colored coins protocol, people can issue new currency by specifying a color 

for a particular Bitcoin UTXO. The protocol recursively defines other UTXOs 

to be the same color as the transaction input UTXO. This allows users to 

keep UTXOs that only contain a certain color, and send these UTXOs just like 

sending normal Bitcoins, by backtracking the entire blockchain to determine 

the color of the received UTXO.

Metacoins - The idea of Metacoins is to create a new protocol on top of the 

Bitcoin blockchain, using Bitcoin transactions to store Metacoin 

transactions, but with a different state transition function APPLY'. Because 

the Metacoin protocol cannot prevent invalid Metacoin transactions on the 

Bitcoin blockchain, a rule is added that if APPLY'(S,TX) returns an error, the 

protocol will default to APPLY'(S,TX) = S. This provides a simple solution for 

creating arbitrary, advanced cryptocurrency protocols that cannot be 

implemented in the Bitcoin system, and the development cost is very low, 

because the mining and network issues are already handled by the Bitcoin 

protocol.

Therefore, in general, there are two ways to build a consensus protocol: 

building a separate network and building a protocol on top of the Bitcoin 

network. While applications such as Namecoin have been successful using 

the first approach, it is difficult to implement because each application 

requires the creation of a separate blockchain and the building and testing 

of all state transitions and network code. In addition, we predict that the



adoption of decentralized consensus technology will follow a power-law 

distribution, with most applications being too small to secure a free 

blockchain, and we also note that a large number of decentralized 

applications, especially decentralized autonomous organizations, require 

interaction between applications.

On the other hand, the Bitcoin-based approach has the disadvantage that it 

does not inherit Bitcoin's property of being able to perform Simplified 

Payment Verification (SPV). Bitcoin can achieve SPV because it can use 

blockchain depth as a proxy for validity. At a certain point, once a 

transaction's ancestors are far enough away from the present, they can be 

considered part of the legal state. In contrast, metacoin protocols based on 

the Bitcoin blockchain cannot force the blockchain to not include 

transactions that do not conform to the metacoin protocol. Therefore, SPV 

for secure metacoin protocols requires scanning all blocks backwards to the 

beginning of the blockchain to confirm whether a transaction is valid. 

Currently, all "light" implementations of metacoin protocols based on Bitcoin 

rely on trusted servers to provide data, which is a rather suboptimal result 

for a cryptocurrency where one of the main purposes is to eliminate the 

need for trust.

script

Even without extending the Bitcoin protocol, it can implement "smart 

contracts" to a certain extent. Bitcoin's UTXO can be owned not only by a 

public key, but also by a more complex script written in a stack-based 

programming language. In this model, to spend such a UTXO, data that 

satisfies the script must be provided. In fact, the basic public key ownership 



mechanism is also implemented through scripts: the script takes an elliptic 

curve signature as input, verifies the transaction and the address that owns 

this UTXO, and returns 1 if the verification is successful, otherwise it returns 

0. More complex scripts are used for other different applications. For 

example, people can create scripts that require two of the three private keys 

to be collected for transaction confirmation (multi-signature), which is very 

useful for corporate accounts, savings accounts and certain commercial 

agents. Scripts can also be used to send rewards to users who solve 

computational problems. People can even create a script like "If you can 

provide a simplified confirmation payment proof that you have sent a 

certain amount of Dogecoin to me, this Bitcoin UTXO is yours." In essence, 

the Bitcoin system allows decentralized exchange of different 

cryptocurrencies.

However, the Bitcoin scripting language has some serious limitations:

Lack of Turing completeness – This means that while the Bitcoin script 

language can support many computations, it cannot support all 

computations. The main missing piece is loop statements. The purpose of 

not supporting loop statements is to avoid infinite loops when confirming 

transactions. In theory, this is an obstacle that can be overcome for script 

programmers, because any loop can be simulated by repeating if 

statements many times, but doing so will lead to inefficient use of script 

space. For example, implementing an alternative elliptic curve signature 

algorithm may require 256 repeated multiplications, each of which needs to 

be coded separately.



Value-blindness . UTXO scripts cannot provide fine-grained control over 

the withdrawal amount of an account. For example, a powerful application 

of oracle contracts is a hedging contract, where A and B each send $1,000 

worth of bitcoin to the hedging contract. After 30 days, the script sends 

$1,000 worth of bitcoin to A and the remaining bitcoin to B. Although 

implementing a hedging contract requires an oracle to determine how much 

a bitcoin is worth in dollars, this mechanism has made great progress in 

reducing trust and infrastructure compared to the current fully centralized 

solution. However, because UTXO is indivisible, the only way to implement 

this contract is to use many UTXOs with different denominations (for 

example, there is a 2^k UTXO for each k with a maximum value of 30) and let 

the oracle pick the correct UTXO to send to A and B.

Lack of state - UTXOs can only be spent or unspent, which leaves no room 

for multi-stage contracts or scripts that require any other internal state. This 

makes it difficult to implement multi-stage options contracts, decentralized 

exchange offers, or two-stage cryptographic commitment protocols 

(necessary to ensure computational rewards). It also means that UTXOs can 

only be used to build simple, one-off contracts, rather than more complex 

stateful contracts such as decentralized organizations, making 

meta-protocols difficult to implement. Binary state combined with value 

blindness means that another important application - withdrawal limits - is 

impossible to implement.

Blockchain-blindness - UTXO cannot see the blockchain data, such as 

random numbers and the hash of the previous block. This defect deprives 

the scripting language of its potential value based on randomness, severely 

limiting its application in other fields such as gambling.



We have examined three approaches to building advanced applications 

on top of cryptocurrencies: building a new blockchain, using scripts on 

the Bitcoin blockchain, and building a metacoin protocol on the Bitcoin 

blockchain. The new blockchain approach gives you the freedom to 

implement any features you want, at the cost of development time and 

nurturing effort. The script approach is very easy to implement and 

standardize, but it is limited in its capabilities. The metacoin protocol, 

while very easy to implement, suffers from poor scalability. In the Aurei 

system, our goal is to build a general framework that can take advantage 

of all three approaches.



Aurei

Aurei aims to integrate and improve upon the concepts of scripting, altcoins, 

and on-chain meta-protocols, enabling developers to create arbitrary 

consensus-based, scalable, standardized, feature-rich, easy-to-develop, 

and interoperable applications. Aurei does this by building the ultimate 

abstract base layer - a blockchain with a Turing-complete programming 

language built in - enabling anyone to create contracts and decentralized 

applications with their own custom ownership rules, transaction methods, 

and state transition functions. The main framework for Namecoin can be 

implemented in two lines of code, and other protocols such as currencies 

and reputation systems can be implemented in less than twenty lines of 

code. Smart contracts - encrypted boxes that contain value and can only be 

opened when certain conditions are met - can also be created on our 

platform, and are much more powerful than what Bitcoin Script can provide 

due to the added power of Turing-completeness, value-awareness, 

blockchain-awareness, and multi-state.

Aurei Account

In the Aurei system, the state is composed of objects called "accounts" (each 

account consists of a 20-byte address) and state transitions that transfer 

value and information between two accounts. Aurei accounts consist of four 

parts:

• A random number, a counter used to ensure that each transaction can 

only be processed once



ARI coin (Ether) is the main crypto fuel inside Aurei and is used to pay 

transaction fees. Generally speaking, Aurei has two types of accounts: 

externally owned accounts (controlled by private keys) and contract 

accounts (controlled by contract code). Externally owned accounts have no 

code, and people can send messages from an external account by creating 

and signing a transaction. Whenever a contract account receives a message, 

the code inside the contract is activated, allowing it to read and write to 

internal storage, send other messages or create contracts.

Messages and Transactions

Aurei messages are somewhat similar to Bitcoin transactions, but there are 

three important differences between the two. First, Aurei messages can be 

created by external entities or contracts, while Bitcoin transactions can only 

be created from the outside. Second, Aurei messages can optionally contain 

data. Third, if the recipient of an Aurei message is a contract account, it can 

choose to respond, which means that Aurei messages also contain the 

concept of functions.

A "transaction" in Aurei is a signed data package that stores messages sent 

from external accounts. A transaction contains the recipient of the message, 

a signature to confirm the sender, the ARI coin account balance, the data to 

be sent, and two values called STARTGAS and GASPRICE. In order to prevent

• The current ARI balance of the account

• The account's contract code, if any

• Account storage (empty by default)



exponential explosion and infinite loops of code, each transaction needs to 

limit the number of computational steps caused by executing the code - 

including the initial message and all messages caused by execution. 

STARTGAS is the limit, and GASPRICE is the fee that needs to be paid to 

miners for each computational step. If the gas is "used up" during the 

execution of the transaction, all state changes are restored to the original 

state, but the transaction fees paid cannot be recovered. If there is still gas 

left when the execution of the transaction is aborted, then the gas will be 

refunded to the sender. There are separate transaction types and 

corresponding message types for creating contracts; the address of the 

contract is calculated based on the hash of the account random number and 

the transaction data.

An important consequence of the messaging mechanism is Aurei's "first 

class citizen" property - contracts have the same rights as external accounts, 

including the right to send messages and create other contracts. This allows 

contracts to play multiple different roles at the same time, for example, a 

user can make a member of a decentralized organization (one contract) an 

intermediary account (another contract) that acts as an intermediary 

between a paranoid individual using a custom quantum proof-based 

Lamport signature (a third contract) and a co-signing entity that itself uses 

an account secured by five private keys (a fourth contract). The power of the 

Aurei platform is that decentralized organizations and proxy contracts do 

not need to care what type of account each party to the contract has.



Aurei state transition function

Aurei's state transition function: APPLY(S,TX) -> S' can be defined as follows:

1.Checks whether the transaction is in the correct format (i.e. has the correct 

value), whether the signature is valid, and whether the random number 

matches the random number of the sender's account. If not, returns an error.

2.Calculate the transaction fee: fee=STARTGAS * GASPRICE and determine 

the sender's address from the signature. Subtract the transaction fee from 

the sender's account and add the sender's random number. If the account 

balance is insufficient, return an error.

3.Set the initial value of GAS = STARTGAS and subtract a certain amount of 

gas value according to the number of bytes in the transaction.

4.Transfer value from the sender's account to the receiver's account. If the 

receiving account does not exist yet, create it. If the receiving account is a 

contract, run the contract's code until the code finishes running or the gas 

runs out.

5.If the value transfer fails because the sender's account does not have 

enough money or the code execution runs out of gas, the original state will 

be restored, but the transaction fee must still be paid, and the transaction 

fee is added to the miner's account.

6.Otherwise, all remaining gas is returned to the sender, and the consumed 

gas is sent to the miner as a transaction fee. For example, suppose the 

contract code is as follows:

if not self.storage[ calldataload ( 0 )]:

self.storage[ calldataload ( 0 )] = calldataload ( 32 )



It is important to note that in reality the contract code is written in the 

underlying Aurei Virtual Machine (EVM) code. The above contract is written 

in our high-level language Serpent, which can be compiled into EVM code. 

Assume that the contract memory is empty at the beginning, a value of 

10ARI coins, gas is 2000, gas price is 0.001ARI coins and 64 bytes of data, 

the first thirty-two bytes of the block represent the number 2 and the 

second represents the word CHARLIE . After the transaction is sent, the 

state transition function is processed as follows:

1.Check that the transaction is valid and in the correct format.

2.Check if the sender of the transaction has at least 2000*0.001=2 ARI coins. 

If so, subtract 2 ARI coins from the sender's account.

3.The initial setting of gas=2000, assuming the transaction length is 170 

bytes, the fee per byte is 5, minus 850, so there is 1150 left.

4.Subtract 10 ARI coins from the sender's account and add 10 ARI coins to 

the contract account.

5.Run the code. In this contract, the code is simple: it checks if the contract 

storage at index 2 is used, notices that it is not, and sets its value to 

CHARLIE. Assume that this consumes 187 units of gas, so the remaining gas 

is 1150 - 187 = 963.

6.Add 963*0.001=0.963 ARI coins to the sender's account and return the 

final state.



If no contract receives the transaction, then all transaction fees are equal to 

GASPRICE multiplied by the byte length of the transaction, and the data of 

the transaction has nothing to do with the transaction fee. In addition, it is 

important to note that messages initiated by contracts can assign gas limits 

to the computations they generate, and if a subcomputation runs out of gas, 

it simply reverts to the state it was in when the message was sent. Therefore, 

just like transactions, contracts can also protect their computational 

resources by setting strict limits on the subcomputations it generates.

Code Execution

The code of Aurei contracts is written in a low-level stack-based bytecode 

language, called "Aurei virtual machine code" or "EVM code". The code 

consists of a series of bytes, each of which represents an operation. 

Generally speaking, code execution is an infinite loop, and an operation is 

executed every time the program counter increases by one (initial value is 

zero) until the code is executed or an error, STOP or RETURN instruction is 

encountered. Operations can access three types of storage space:

• A stack is a last-in-first-out data storage where 32-byte values can be 

pushed into and popped from the stack.

• In-memory , infinitely scalable queue of bytes.

Long-term storage of the contract , a key/value storage, where the key and 

value are both 32 bytes in size. Unlike the stack and memory that are reset 

when the calculation is completed, the storage content will be maintained 

for a long time.



The code can access values like block header data, sender and received 

message data, and the code can also return a byte array of data as output.

The formal execution model of EVM code is surprisingly simple. When the 

Aurei virtual machine is running, its complete computational state can be 

defined by the tuple (block_state, transaction, message, code, memory, 

stack, pc, gas) , where block_state is the global state containing all account 

balances and storage. At each execution round, the current instruction is 

found by calling the pc (program counter)th byte of the code, and each 

instruction has its own definition of how it affects the tuple. For example, 

ADD pops two elements from the stack and pushes their sum, decrements 

gas by one and increments pc by one, and SSTORE pops the top two 

elements from the stack and inserts the second element into the contract 

storage location defined by the first element, again reducing the gas cost by 

up to 200 and incrementing pc by one. Although there are many ways to 

optimize Aurei through just-in-time compilation, a basic implementation of 

Aurei can be implemented in a few hundred lines of code.

Blockchain and Aurei’s output mechanism

Although there are some differences, Aurei's blockchain is similar to the 

Bitcoin blockchain in many ways. The difference in their blockchain 

architecture is that Aurei blocks contain not only transaction records and 

recent states, but also block numbers and difficulty values. The block 

confirmation algorithm in Aurei is as follows:

1.Checks whether the previous block referenced by the block exists and is 

valid.



2.Checks if the timestamp of the block is greater than the previous block 

referenced and is less than 15 minutes old.

3.Checks that block numbers, difficulty values, transaction roots, uncle roots, 

and gas limits (many low-level concepts unique to Aurei) are valid.

4.Checks whether the block's proof of work is valid.

5.Assign S[0] to the STATE_ROOT of the previous block .

6.Assign TX to the transaction list of the block, with a total of n transactions. 

For i belonging to 0...n-1 , perform state transition S[i+1] = APPLY(S[i],TX[i]) . 

If any transition fails, or the gas spent by the program to this point exceeds 

GASLIMIT , an error is returned.

7.Assign S[n] to S_FINAL and pay the block reward to the miner.

8.Check if S_FINAL is the same as STATE_ROOT . If so, the block is valid. 

Otherwise, the block is invalid.

This confirmation method may seem inefficient at first glance, as it requires 

storing all the states for each block, but in fact Aurei's confirmation 

efficiency is comparable to that of Bitcoin. The reason is that the states are 

stored in a tree structure, and each additional block only requires changing 

a small part of the tree structure. Therefore, in general, most of the tree 

structure of two adjacent blocks should be the same, so that the data is 

stored once and can be referenced twice using a pointer (i.e., a subtree 

hash). A tree structure called a "Patricia Tree" can achieve this, which 

includes a modification of the Merkle tree concept that allows not only 

changing nodes, but also inserting and deleting nodes. In addition, because 

all state information is part of the last block, there is no need to store the 

entire block history - this method, if it can be applied to the Bitcoin system, 

has been calculated to save 10-20 times the storage space.



application

Broadly speaking, there are three types of applications on Aurei. The first are 

financial applications, which provide users with more powerful ways to 

manage and participate in contracts with their money. These include 

sub-currencies, financial derivatives, hedging contracts, savings wallets, 

wills, and even some types of comprehensive employment contracts. The 

second are semi-financial applications, where money is present but there 

are also heavy non-monetary aspects, a perfect example being 

self-enforced bounties for solving computational problems. Finally, there are 

completely non-financial applications like online voting and decentralized 

governance.

Token System

On-chain token systems have many applications, from sub-currencies 

representing assets like dollars or gold to company shares, individual tokens 

representing smart assets, secure unforgeable coupons, and even token 

systems for reward points that have no connection to traditional value at all. 

Implementing a token system in Aurei is surprisingly easy. The key point is to 

understand that all currencies or token systems are, at their core, a database 

with operations like: subtract X units from A and add X units to B, provided 

that (1) A had at least X units before the transaction and (2) the transaction 

was approved by A. Implementing a token system is a matter of 

implementing this logic into a contract.

The basic code to implement a token system in Serpent language is as 

follows:



def send (to, value):

    if self.storage[from] >= value:

        self.storage[from] = self.storage[from] - value

        self.storage[to] = self.storage[to] + value

This is essentially a minimal implementation of the "banking system" state 

transition functionality described further down in this article. Some 

additional code would need to be added to provide functionality for 

distributing coins initially and in some other edge cases, and ideally a 

function for other contracts to query the balance of an address. That would 

be enough. In theory, an Aurei-based token system that acts as a 

sub-currency could include an important feature that Bitcoin-based 

on-chain meta-coins lack: the ability to pay transaction fees directly with 

that currency. This capability would be achieved by maintaining an ARI coin 

account in the contract that is used to pay transaction fees for senders, and 

the contract would continually fund the ARI coin account by collecting the 

internal currency used to pay transaction fees and auctioning it off in a 

constantly running auction. This would require users to "activate" their 

accounts with ARI coin, but once the account has ARI coin it can be reused 

as the contract tops it up each time.



Financial derivatives and stable currencies

Financial derivatives are the most common application of "smart contracts" 

and one of the easiest to implement with code. The main challenge in 

implementing financial contracts is that most of them need to refer to an 

external price publisher; for example, a very popular application is a smart 

contract used to hedge the fluctuations of the price of ARI coins (or other 

cryptocurrencies) relative to the US dollar, but the contract needs to know 

the price of ARI coins relative to the US dollar. The simplest way to do this is 

through a "data provider" contract maintained by a specific institution (such 

as Nasdaq), which is designed so that the institution can update the 

contract as needed and provide an interface so that other contracts can 

send a message to the contract to get a reply containing price information.

When these key elements are in place, a hedge contract looks like this:

1.Waiting for A to input 1000ARI coins. .

2.Wait for B to input 1000ARI coins.

3.By querying the data provider contract, the dollar value of 1000 ARI coins, 

for example, x dollars, is recorded to storage.

After 30 days, either A or B is allowed to "reactivate" the contract to send $x 

worth of ARI coins (requery the data provider contract to get the new price 

and calculate) to A and send the remaining ARI coins to B.



Such contracts have extraordinary potential for crypto-commerce. One of 

the common criticisms of cryptocurrencies is their volatility; while a large 

number of users and merchants may want the security and convenience of 

crypto assets, they are unlikely to be happy with an asset losing 23% of its 

value in a single day. Until now, the most commonly recommended solution 

has been issuer-backed assets; the idea is that the issuer creates a 

sub-currency that they have the right to issue and redeem, giving one unit 

of the sub-currency to anyone who (offline) provides them with one unit of 

a certain underlying asset (e.g. gold, dollars). The issuer promises to return 

one unit of the underlying asset to anyone who returns one unit of the 

crypto asset. This mechanism enables any non-crypto asset to be 

"upgraded" to a crypto asset, if the issuer is trustworthy.

In practice, however, issuers are not always trustworthy, and in some cases 

the banking system is too fragile or dishonest to allow such services to exist. 

Financial derivatives offer an alternative. Instead of a single issuer providing 

reserves to back an asset, there is a decentralized market of speculators 

betting that the price of a crypto asset will rise. Unlike the issuer, speculators 

do not have bargaining power on their side, as the hedge contract freezes 

their reserves in the contract. Note that this approach is not fully 

decentralized, as a trusted source of price information is still required, 

although it is arguable that this is still a huge step forward in reducing 

infrastructure requirements (unlike an issuer, a price publisher does not 

require a license and would appear to be free speech) and reducing the risk 

of potential fraud.



Identity and Reputation Systems

The earliest altcoin, Namecoin, attempted to use a Bitcoin-like blockchain to 

provide a name registry system where users could register their names 

along with other data in a public database. The most common use case is a 

domain name system that maps a domain name like "bitcoin.org" (or in 

Namecoin's case, "bitcoin.bit") to an IP address. Other use cases include 

email verification systems and potentially more advanced reputation 

systems. Here is the basic contract in Aurei that provides a name registry 

system similar to Namecoin:

def register (name, value):

    if !self.storage[name]:

self.storage[name] = value

The contract is very simple; it's a database in the Aurei network that can be 

added to but not modified or removed. Anyone can register a name as a 

value that never changes. A more complex name registry contract would 

include "functionality clauses" that allow other contracts to query, and a 

mechanism for the "owner" of a name (i.e. the first registrant) to modify the 

data or transfer ownership. Even reputation and trust network features 

could be added on top of it.

Decentralized Storage

Over the past few years, a number of popular online file storage startups 

have emerged, most notably Dropbox, which seeks to allow users to upload 

backups of their hard drives, store the backups, and allow users to access 

them for a monthly fee. However, the file storage market is sometimes



relatively inefficient at this point; a cursory look at existing services shows 

that, particularly at the "uncanny valley" of 20-200GB where there is neither 

free space nor enterprise discounts, mainstream file storage costs per 

month mean paying for the cost of an entire hard drive in a month. The Aurei 

contract allows for the development of a decentralized storage ecosystem 

where users can reduce the cost of file storage by renting out their own hard 

drives or unused network space for a small profit.

The fundamental building block of such a facility is what we call a 

"decentralized Dropbox contract". This contract works as follows. First, 

someone breaks the data to be uploaded into chunks, encrypts each chunk 

for privacy, and builds a Merkle tree out of it. Then a contract is created with 

the following rules: every N chunks, the contract extracts a random index 

from the Merkle tree (using the hash of the previous chunk accessible to the 

contract code to provide randomness), and then gives the first entity XARI 

coins to back a proof of ownership of the chunk at that particular index in 

the tree with something like Simplified Payment Verification (SPV). When a 

user wants to re-download his file, he can use a micropayment channel 

protocol (e.g. 1 SAB per 32k bytes) to restore the file; the most cost-efficient 

way to do this is for the payer to not publish the transaction until the end, 

but to replace the original transaction with a slightly more cost-effective 

transaction with the same random number after every 32k bytes.

An important feature of this protocol is that, although it looks like a person 

trusts many random nodes who are not prepared to lose the file, he can 

divide the file into many small pieces through secret sharing, and then know 

through monitoring contracts that each small piece is still kept by a certain 

node. If a contract is still paying, it provides evidence that someone is still 

keeping the file.



Decentralized Autonomous Organization

The concept of a "decentralized autonomous organization" (DAO) is 

generally a virtual entity with a certain number of members or shareholders 

that decides to spend money and make code changes based on a majority 

of, say, 67%. The members collectively decide how the organization allocates 

funds. The method of allocating funds may be bounties, salaries, or more 

attractive mechanisms such as rewarding work with internal currency. This 

essentially replicates the legal structure of a traditional company or 

non-profit organization, using only cryptographic blockchain technology to 

enforce it. To date, much of the discussion around DAOs has been around 

the "capitalist" model of a "decentralized autonomous corporation" (DAC) 

with shareholders who receive dividends and tradable shares; as an 

alternative, an entity described as a "decentralized autonomous community" 

would give all members equal power in decision-making and require a 67% 

majority to add or remove members. The rule that each person can only 

have one membership would need to be enforced by the group.

Below is an outline of how to implement a DO in code. The simplest design 

is a piece of code that can modify itself if two-thirds of the members agree. 

Although the code is theoretically immutable, it is still easy to circumvent 

obstacles and make the code modifiable by placing the main body of the 

code in a separate contract and pointing the address of the contract call to 

a modifiable storage. In a simple implementation of such a DAO contract, 

there are three types of transactions, distinguished by the data provided by 

the transaction:



[0,i,K,V] registers a change proposal with index i to the contents of memory 

addresses indexed K to v.

[1,i] registers a vote for proposal i.

[2,i] If there are enough votes, confirm proposal i.

The contract would then have specific terms for each of these. It would 

maintain a record of all changes to open storage and a table of who voted. 

There would also be a table of all members. When a change to any storage 

content is approved by a two-thirds majority, a final transaction would 

execute the change. A more sophisticated framework would add built-in 

election functionality to enable things like sending transactions, adding and 

removing members, and even provide voting representation in a delegated 

democracy style (i.e. anyone can delegate to another person to vote on their 

behalf, and the delegation is transferable, so if A delegates to B and then B 

delegates to C then C will determine A's vote). This design would allow the 

DAO to grow organically as a decentralized community, allowing people to 

eventually delegate the task of selecting the right people to experts, unlike 

the current system where experts can easily come and go over time as 

community members change sides. An alternative model would be a 

decentralized company, where any account can own from zero to more 

shares, and decisions require a two-thirds majority of shares to agree. A 

complete framework would include asset management functionality - the 

ability to submit orders to buy or sell shares and the ability to accept such 

orders (assuming there is an order matching mechanism in the contract). 

Representation still exists in the form of delegated democracy, giving rise to 

the concept of a "board of directors".



More advanced organizational governance mechanisms may be 

implemented in the future; for now a decentralized organization (DO) can be 

described starting with a decentralized autonomous organization (DAO). 

The distinction between a DO and a DAO is fuzzy, a rough dividing line is 

whether governance can be achieved through a political-like process or an 

"automatic" process, a good intuitive test is the "no common language" 

criterion: can the organization function properly if the two members do not 

speak the same language? Obviously, a simple traditional holding company 

will fail, while something like the Bitcoin protocol is likely to succeed, and 

Robin Hanson's "futarchy", a mechanism for organizational governance 

through prediction markets is a real good example of what "self-governing" 

governance might look like. Note that one need not assume that all DAOs 

are superior to all DOs; autonomy is just a paradigm that has great 

advantages in some specific scenarios, but may not work in other places, 

and many semi-DAOs may exist.

Further applications

1.Savings wallet . Suppose Alice wants to ensure the safety of her funds, but 

she is worried about losing or having her private key stolen by a hacker. She 

puts ARI coins into a contract with Bob, as shown below. This contract is a 

bank:

Aurei can withdraw up to 1.2% of ARI coins per day and trade them on the 

exchange in seconds .

2.Crop insurance . One can easily create a derivative contract with weather 

conditions as input instead of any price index. If a farmer in Iowa buys a 

derivative that pays out based on the inverse of rainfall in Iowa, then if there 



is a drought, the farmer will automatically receive a payout and if there is 

enough rain he will be happy because his crops will do well.

3.A decentralized data publisher . For difference-based financial contracts, it 

is actually possible to decentralize the data publisher through the "Schelling 

Point" protocol. Schelling Point works as follows: N parties provide input 

values to the system for a specified data (such as the ETH/USD price), all 

values are sorted, and each node that provides between 5% and 10% of the 

values will be rewarded. Everyone has an incentive to provide the answer 

that others will provide. The answer that a large number of players can really 

agree on is obviously the correct answer by default. This constructs a 

decentralized protocol that can theoretically provide many values, including 

the ETH/USD price, the temperature in Berlin, and even the result of a 

particularly difficult calculation.

4.Cloud computing . EVM technology can also be used to create a verifiable 

computing environment that allows users to invite others to perform 

computations and then selectively request proof that the computations 

were completed correctly at certain randomly selected checkpoints. This 

makes it possible to create a cloud computing market that any user can 

participate in with their desktop, laptop, or dedicated server, and on-site 

inspections and security deposits can be used to ensure that the system is 

trustworthy (i.e., no node can profit from cheating). Although such a system 

may not be suitable for all tasks; for example, tasks that require advanced 

inter-process communication are not easy to complete on a large cloud of 

nodes. However, some other tasks are easy to implement in parallel; projects 

such as SETI@home, folding@home, and genetic algorithms are easy to 

carry out on such a platform.



5. Peer-to-peer gambling . Any number of peer-to-peer gambling protocols 

can be moved to the Aurei blockchain, such as Frank Stajano and Richard 

Clayton's Cyberdice. The simplest gambling protocol is actually a simple 

contract that bets on the difference between the hash value and the guess 

value of the next block. More complex gambling protocols can be created 

based on this to achieve nearly zero-fee and fraud-free gambling services.

6. Prediction markets . Prediction markets will be easy to implement with 

either oracles or Schellingcoins, and prediction markets with Schellingcoins 

may prove to be the first mainstream “futarchy” application as a 

decentralized organization management protocol.

7. On-chain decentralized market, based on identity and reputation system. 

Market development in the emerging field of digital encrypted payment.



Miscellaneous and Concerns

The "Greedy Heaviest Observed Subtree" (GHOST) protocol is an innovation 

introduced by Yonatan Sompolinsky and Aviv Zohar in December 2013. The 

motivation for GHOST is that current fast-confirming blockchains suffer 

from low security due to a high rate of block obsolescence; since blocks take 

some time (let's say t) to propagate to the network, if miner A mines a block 

and then miner B happens to mine another block before A's block 

propagates to B, miner B's block will be obsolete and not contribute to the 

security of the network. In addition, there is a centralization problem here: if 

A is a mining pool with 30% of the network's hashrate and B has 10%, A will 

be at risk of producing obsolete blocks 70% of the time and B will be 

producing obsolete blocks 90% of the time. Therefore, if the scrap rate is 

high, A will simply be more efficient due to a higher share of hashrate, and 

combining these two factors, a blockchain with a fast block generation rate 

is likely to result in a mining pool with a share of hashrate that actually 

controls the mining process.

As described by Sompolinsky and Zohar, Ghost solves the first problem that 

reduces the security of the network by including obsolete blocks in the 

calculation of which chain is "longest"; that is, not only a block's parents and 

earlier ancestors, but also its obsolete descendants (called "uncles" in Aurei 

terminology) are included in the calculation of which block has the most 

proof-of-work backing it. We go beyond the protocol described by 

Sompolinsky and Zohar to solve the second problem - centralization

Implementation of the Improved Ghost Protocol



tendency. Aurei pays 10% of the reward to obsolete blocks that contribute to 

the confirmation of new blocks as "uncles". "Nephews" who include them in 

the calculation will receive 5 % of the reward. However, uncles are not 

rewarded with transaction fees. Aurei implements a simplified version of 

Ghost that only goes down to layer 5. Its characteristic is that the obsolete 

block can only be included in the calculation as an uncle block by the second 

to fifth generation descendants of its parent, but not by more distant 

descendants (such as the sixth generation descendants of the parent block, 

or the third generation descendants of the grandfather block). There are 

several reasons for this. First, the unconditional ghost protocol will bring too 

much complexity to the calculation of which uncle block of a given block is 

legitimate. Second, the unconditional ghost protocol with compensation 

used by Aurei deprives miners of the incentive to mine on the main chain 

instead of a public attacker's chain. Finally, calculations show that the 

five-layer ghost protocol with incentives achieves more than 95% efficiency 

even when the block time is 15s, and the miners with 25% of the computing 

power benefit less than 3% from centralization.

Because every transaction published to the blockchain incurs a cost to 

download and verify, a regulated mechanism that includes transaction fees 

is needed to prevent spam. The default approach used by Bitcoin is purely 

voluntary transaction fees, relying on miners to act as gatekeepers and set 

a dynamic minimum fee. Because this approach is "market-based," allowing 

miners and transaction senders to determine prices based on supply and 

demand, it has been well accepted in the Bitcoin community. However, the

cost



problem with this logic is that transaction processing is not a market; while 

it is intuitively attractive to interpret transaction processing as a service 

provided by miners to senders, the fact is that a miner's inclusion of a 

transaction is required to be processed by every node in the network, so the 

largest portion of the cost of transaction processing is borne by third parties 

rather than the miners who decide whether to include the transaction. As a 

result, the tragedy of the commons is very likely to occur.

However, this market-based mechanism loophole magically eliminates its 

own impact when a particular imprecise simplifying assumption is made. 

The argument is as follows. Assumptions:

1.A transaction takes k steps, providing a reward kR to any miner that 

includes the transaction, where R is set by the transaction publisher, and 

both k and R are (roughly) visible to the miner in advance.

2.The cost of each node processing each operation is C (that is, the 

efficiency of all nodes is the same).

3.There are N mining nodes, each with the same computing power (i.e. 1/N 

of the total network computing power).

4.There is no full node that does not mine.

Miners are willing to mine when the expected reward is greater than the 

cost. Thus, since miners have a 1/N chance of processing the next block, the 

expected benefit is kR/N, and the processing cost of the miner is simply kC. 

Thus, when kR/N > kC, that is, R > NC. Miners are willing to include 

transactions. Note that R is the per-step fee provided by the sender of the 

transaction, which is the lower limit of the benefit that miners can gain from



processing transactions. NC is the cost of processing an operation for the 

entire network. Therefore, miners are only motivated to include transactions 

whose benefits are greater than the costs. However, these assumptions 

have several important deviations from reality:

1.Because the extra verification time delays the block's propagation and 

thus increases the chance that the block will become invalid, the miner 

processing the transaction pays a higher cost than other validating nodes.

2.Full nodes that do not mine do exist.

3.In practice, the distribution of computing power may end up being 

extremely uneven.

4.Speculators, political enemies, and lunatics who are committed to 

destroying the network do exist, and they can cleverly set up contracts so 

that their costs are much lower than other validators. Point 1 above drives 

miners to include fewer transactions, and point 2 increases NC; therefore the 

effects of these two points at least partially offset each other. Points 3 and 4 

are the main problems; as a solution we simply establish a floating upper 

limit: no block can contain more operations than BLK_LIMIT_FACTOR times 

the long-term exponential moving average. Specifically:

blk.oplimit = floor((blk.parent.oplimit * (EMAFACTOR - 1) + floor

(parent.opcount * BLK_LIMIT_FACTOR)) /EMA_FACTOR)

BLK_LIMIT_FACTOR and EMA_FACTOR are constants that are temporarily 

set to 65536 and 1.5, but may be adjusted after further analysis.



Computation and Turing completeness

It is important to emphasize that the Aurei virtual machine is Turing 

complete; this means that EVM code can implement any conceivable 

computation, including infinite loops. EVM code can implement loops in two 

ways. First, the JUMP instruction allows the program to jump back to a 

previous point in the code, and there is also the JUMPI instruction that 

allows conditional jumps such as while x < 27: x = x * 2. Second, contracts 

can call other contracts, with the potential to implement loops through 

recursion. This naturally leads to the question: Can malicious users force 

miners and full nodes to shut down by forcing them into infinite loops? This 

question arises because of a problem in computer science called the halting 

problem: in general, there is no way to know whether a given program will 

finish running in a finite amount of time.

As mentioned in the state transition section, our solution solves the problem 

by setting a maximum number of computation steps to be executed for 

each transaction, if exceeded the computation is reverted but the fee is still 

paid. Messages work in the same way. To show the motivation behind this 

solution, consider the following example:

An attacker creates a contract that runs an infinite loop, then sends a 

transaction to a miner that activates the loop. The miner will process the 

transaction, running the infinite loop until the gas runs out. Even if the 

transaction is stopped halfway due to gas exhaustion, the transaction is still 

correct (going back to the original point) and the miner still earns the fees 

for each step of the calculation from the attacker.



An attacker creates a very long infinite loop with the intention of forcing 

miners to keep calculating for so long that several blocks are generated 

before the calculation is completed and the miners cannot include 

transactions to earn fees. However, the attacker needs to publish a 

STARTGAS value to limit the number of executable steps, so the miners will 

know in advance that the calculation will take too many steps.

�An attacker sees a contract with a format like send(A, self.storage); 

self.storage = 0 and sends a transaction with just enough fees to execute the 

first step but not the second step (i.e. withdraw the funds but not reduce the 

account balance). Contract authors don't need to worry about defending 

against such attacks, because if execution is stopped midway all changes 

are reverted.

A financial contract works by extracting the median of nine dedicated data 

publishers to minimize the risk that an attacker takes over one of the data 

providers and then turns the data provider, which is designed to be 

changeable as described in the DAO chapter, into running an infinite loop in 

an attempt to force any attempt to claim funds from the financial contract to 

abort due to gas exhaustion. However, the financial contract can set gas 

limits in messages to prevent this problem. The alternative to Turing 

completeness is Turing incompleteness, where JUMP and JUMPI 

instructions do not exist and only one copy of each contract is allowed to 

exist in the call stack at a given time. In such a system, the fee system 

described above and the uncertainty surrounding the efficiency of our 

solution may not be needed, because the cost of executing a contract will be 

determined by its size. Moreover, Turing incompleteness is not even a big 



limitation, of all the example contracts we have envisioned internally, only 

one so far requires a loop, and even this loop can be replaced by 26 

repetitions of a single line of code. Given the serious troubles and limited 

benefits of Turing completeness, why not simply use a Turing incomplete 

language? In fact, Turing incompleteness is far from a neat solution. Why? 

Consider the following contract:

C0 : call ( C1 ); call( C1 );

C1 : call ( C2 ); call ( C2 );

C2 : call ( C3 ); call ( C3 );

...

C49 : call ( C50 ); call( C50 );

C50 : (Do a Turing machine step calculation and record the result in the 

long-term storage of the contract)

Now, send such a transaction to A. Thus, in 51 transactions, we have a 

contract that takes 2^50 steps to compute. Miners may try to detect such 

logic bombs in advance by maintaining a maximum number of executable 

steps for each contract and calculating the number of possible execution 

steps for contracts that recursively call other contracts, but this will prohibit 

miners from creating contracts that create other contracts (because the 

creation and execution of the above 26 contracts can easily be put into a 

single contract). Another problem is that the address field of a message is a 

variable, so in general it may not even be possible to know in advance which 

other contract a contract will call. So, in the end we have a surprising 

conclusion: Turing completeness is surprisingly easy to manage, and Turing 

incompleteness is surprisingly difficult to manage in the absence of the 

same control - so why not make the protocol Turing complete?



Currency and issuance

The Aurei network includes its own built-in currency, ARI coin, which plays a 

dual role, providing the main liquidity for various digital asset transactions, 

and more importantly, providing a mechanism for paying transaction fees. 

For convenience and to avoid future disputes, the names of different 

denominations will be set in advance:

This should be thought of as an extension of the concepts of “yuan” and 

“cent” or “bitcoin” and “satoshi”. In the near future, we expect “ARI coins” to 

be used for normal transactions, “finneys” to be used for microtransactions, 

and “saabs” and “weis” to be used for discussions about fees and protocol 

implementation.

The distribution mode is as follows:

Through the sale, ARI coins will be sold at a price of 1337-2000 ARI coins per 

BTC. A mechanism designed to raise funds for the Aurei organization and 

pay developers has been successfully used on some other cryptocurrency 

platforms. Early buyers will enjoy a large discount, and the BTC raised from 

the sale will be used entirely to pay salaries and rewards for developers and 

researchers, as well as projects invested in the cryptocurrency ecosystem.

0.14285714 $ per coin (100 million is the total number of coins issued) will 

be allocated to early contributors who participated in the development 

before BTC financing or other deterministic financing is successful, and 

another 0.14285714 $ per coin will be allocated to the value before the 

issuance is completed .

100 million ARI will be issued in a fixed amount from the time of launch to 

facilitate subsequent value maintenance and improvement.



Release Breakdown

The perpetual linear growth model reduces the risk of excessive 

concentration of wealth in Bitcoin and gives fair opportunities to people 

living in the present and future to acquire currency, while maintaining 

incentives to acquire and hold ARI coins, because the "money supply growth 

rate" tends to zero in the long run. We also infer that as time goes by, there 

will always be coins lost due to carelessness and death. Assuming that coins 

are lost as a fixed proportion of the annual money supply, the total money 

supply in circulation will eventually stabilize at a value equal to the annual 

money supply divided by the loss rate.

In addition to the linear issuance method, like Bitcoin, the supply growth 

rate of ARI coins also tends to increase by 5.76 % -867 % per year in the long 

run .

Scalability

Scalability is a common concern for Aurei, and like Bitcoin, Aurei suffers from 

the dilemma that every transaction needs to be processed by every node in 

the network. Bitcoin's current blockchain size is about 20GB, growing at a 

rate of 1MB per hour. If the Bitcoin network were to handle Visa-level 

transactions at 2,000 tps, it would grow at a rate of 1MB every three seconds 

(1GB per hour, 8TB per year). Aurei may also experience a similar or even 

worse growth pattern, because there are many applications on top of the 

Aurei blockchain, rather than just a simple currency like Bitcoin, but the fact 

that Aurei full nodes only need to store state rather than the complete 

blockchain history makes the situation better.



The problem with large blockchains is the risk of centralization. If the 

blockchain size increases to, say, 100TB, the likely scenario is that only a very 

small number of large merchants will run full nodes, while regular users will 

use light SPV nodes. This raises concerns about the risk of full nodes 

colluding to commit fraud for profit (e.g. changing the block reward to give 

themselves BTC). Light nodes will have no way to detect such fraud 

immediately. Of course, there might be at least one honest full node, and 

after a few hours the news about the fraud would leak through channels like 

Reddit, but by then it would be too late: no matter how hard regular users 

try to invalidate blocks that have already been produced, they will run into a 

huge, infeasible coordination problem of the same scale as launching a 

successful 51% attack. In Bitcoin, this is a problem right now, but a change 

suggested by Peter Todd could alleviate this problem.

In the near term, Aurei will use two additional strategies to address this 

problem. First, because of the blockchain-based mining algorithm, at least 

every miner is forced to be a full node, which guarantees a certain number 

of full nodes. Second, and more importantly, after processing each 

transaction, we include the root of an intermediate state tree in the 

blockchain. Even if block verification is centralized, as long as there is an 

honest validator, the centralization problem can be avoided through a 

verification protocol. If a miner publishes an incorrect block, it is either 

malformed or the state S[n] is incorrect. Since S[0] is correct, there must be 

a first incorrect state S[i] but S[i-1] is correct. The validator will provide the 

index i, along with the subset of Patricia tree nodes required to process 

APPLY(S[i-1],TX[i]) -> S[i]. These nodes will be instructed to perform this 

part of the calculation and see if the resulting S[i] is consistent with the 

previously provided value.



In addition, what is more complicated is that malicious miners publish 

incomplete blocks to attack, resulting in insufficient information to 

determine whether the block is correct. The solution is a challenge-response 

protocol: the verification node challenges the target transaction index, and 

the light node that receives the challenge information will cancel the trust in 

the corresponding block until another miner or validator provides a Patricia 

node subset as correct evidence.



Decentralized Applications
Overview: 

The contract mechanism described above enables anyone to build a 

command-line application running on a virtual machine with network-wide 

consensus (essentially), which can modify a network-wide accessible state 

as its "hard disk". However, for most people, the command-line interface 

used as a transaction sending mechanism is not user-friendly enough to 

make decentralization an attractive alternative. Ultimately, a complete 

"decentralized application" should include both the underlying business 

logic components [whether fully implemented in Aurei, using Aurei in 

combination with other systems (such as a P2P messaging layer, one of 

which is being planned to be built into the Aurei client), or just other 

systems] and the upper-level graphical user interface components. The 

Aurei client is designed to be a web browser, but includes support for the 

"eth" Javascript API object, which can be used by special web pages viewed 

in the client to interact with the Aurei blockchain. From the perspective of 

"traditional" web pages, these pages are completely static content, because 

blockchains and other decentralized protocols will completely replace 

servers in handling user-initiated requests. Finally, it is hoped that 

decentralized protocols will use Aurei to store web pages themselves in 

some way.



in conclusion

The Aurei protocol was originally conceived as an upgraded cryptocurrency 

that provides advanced features such as on-chain contracts, withdrawal 

limits and financial contracts, gambling markets, etc. through a highly 

general language. The Aurei protocol will not directly "support" any 

application, but the existence of a Turing-complete programming language 

means that in theory arbitrary contracts can be created for any transaction 

type and application. However, what is more interesting about Aurei is that 

the Aurei protocol goes further than just currency. Protocols and 

decentralized applications built around decentralized storage, decentralized 

computing and decentralized prediction markets, as well as dozens of 

similar concepts, have the potential to fundamentally improve the efficiency 

of the computing industry and provide strong support for other P2P 

protocols by adding an economic layer for the first time. In the end, there will 

also be a large number of applications that have nothing to do with money.

The concept of arbitrary state transitions implemented by the Aurei protocol 

provides a platform with unique potential; unlike closed protocols designed 

for a single purpose such as data storage, gambling or finance, Aurei is open 

by design, and we believe it is extremely suitable as a base layer for the vast 

number of financial and non-financial protocols that will emerge in the 

coming years.



Notes and Further Reading

annotation

1. An experienced reader will note that a Bitcoin address is in fact the hash 

of an elliptic curve public key, not the public key itself, however in fact it is 

perfectly reasonable to call a public key hash a public key from a 

cryptographic point of view. This is because Bitcoin cryptography can be 

thought of as a custom digital signature algorithm, where the public key 

consists of the hash of the elliptic curve public key, the signature consists of 

the elliptic curve public key concatenated with the elliptic curve signature, 

and the verification algorithm consists of checking the elliptic curve public 

key with the elliptic curve public key hash provided as the public key, and 

then verifying the elliptic curve signature with the elliptic curve public key.

2. Technically, the median of the first 11 blocks.

3. Internally, both 2 and "CHARLIE" are numbers, the latter one has a huge 

base256 encoding format, and the number can range from 0 to 2^256-1.
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